
The long-wavelength longitudinal optic mode (LO) 
frequency of a crystal is related to the TO mode fre
quency by the Lyddane-Sachs-Teller relation,ll 

(1) 

where EO and Eoo represent the low and high frequency 
dielectric constants. Equation (1) holds for a cubic 
diatomic crystal. For the mixed crystal system 
KCh_zBrz which exhibit a one-mode behavior, Eq. 
(1) was used3 to obtain the LO mode frequency, 
assuming that the dielectric constants vary linearly 
with x. Longitudinal optical modes of KCh_zBrz thus 
calculated agreed3 quite well with the predictions of 
the virtual ion model.2 For a multimode crystal a 
modified Lyddane-Sachs- Teller relation had been 
proposed12 

(2) 

and should also apply to mixed crystals displaying 
two-mode behavior. However, this relation is inade
quate for obtaining individual LOl and L0 2 fre
quencies of a crystal AB1-:eCz , when their TO l and 
T02 frequencies are known. Chang and Mitra2 have 
given the following semiempirical relations for this 
purpose: 

and 
(4) 

where 
47rPl = (1- x) [EO (AB) - Eoe (AB) ] 

and 
47rP2 = x[ EO (A C) - Eoe) (A C)]. 

Longitudinal optical frequencies for ZnSl_zSez ob
tained from present TO frequency data using Eqs. 
(3) and (4) are shown in Fig. 6. Experimental values 
of LO frequencies for the mixed crystal were mea
sured4 by Raman scattering and are also shown in 
Fig. 6. The comparison appears excellent. Similar 
results were also indicated for the CdS1_zSez system. 

Observation of Fig. 6 will show that as the mole 
fraction x of ZnSe increases the ZnS-like LO mode fre
quency (LO l ) decreases and the ZnS-like TO mode fre
quency (TO 1), on the other hand, increases, the two 
lines meeting in the region of x~l. This triply de
generate mode is termed the localized vibrational 
mode of S in ZnSe. Ideally, such a mode should be 
operative at an infinite dilution of a light impurity 
(B) in a crystal AC such that mB <mA,mC, and will 
occur in a frequency region above the highest optic 
phonon frequency (k ""O LO) of the host lattice (AC). 
The local mode peak position observed with a crystal 
of ZnSe about 1 mm thick and 1 in. diameter with 
about 1 % substitutional S impurity is presented in 
Fig. 6. Such a spectrum could not be observed with the 
diamond cell because of necessarily thin samples used 
in such a cell. Now turning to the ZnSe modes, one 
observes that the L0 2 mode frequency increases and 
the T02 mode frequency decreases with x . The two 
lines meet in a region of X~O. This triply degenerate 
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FIG. 6. Long-wavelength optic phonon frequencies of ZnSl_~Se~ 
at 1 atm pressure as functions of x. The various symbols are as 
follows: • infrared transmission data obtained with diamond cell; + local mode frequency of S in ZnSe obtained from transmission 
measurement on a thicker and larger sample (see text) ; 0 Raman 
data (Ref. 4) ; --- Chang and Mitra theory (Ref. 2) ; - - - Cal
culated LO data using present experimental TO data. 

mode is termed the gap mode, and is observed when a 
nominal amount of a heavy impurity (Se) is introduced 
in a crystal in which a frequency gap occurs between 
the optic and acoustic bands in its phonon spectrum. 
The local and gap modes are known to be quite tem
perature sensitive.13 

N ext, we consider the effect of pressure. A precise 
measurement of shift of frequency of the LO and TO 
modes of ZnSe has recently been made14 using a 
hydrostatic pressure cell over only a small pressure 
range (9 kbar). The present data on the TO of ZnSe 
agree qualitatively with the data of Ref. 14. But the 
uncertainty in the present data, chiefly because of 
difficulties in accurate pressure calibration and pres
ence of pressure gradient in the diamond cell, makes 
a quantitative comparison difficult. 

The results of the present experiment establish 
that up to the pressure range investigated both 
ZnSl-xSez and CdS1_zSez remain two-mode systems. 
Since dielectric constants of the end members are not 
known as functions of pressure, the LO modes at 
higher pressures could not be determined. N everthe
less, extrapolation of the TO I branch to x= 1 and T02 

branch to x = 0 enables one, in principle, to obtain 
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the local and gap mode frequencies as functions of 
pressure. 

As may be seen from Figs. 1 and 3, the position of 
the high frequency mode varies linearly with pressure; 
the slopes for the various mixtures do not differ ap
preciably, indicating that they retain their ZnS or 
CdS character. For both the systems, the lowest S 
concentration studied corresponded to 0.33 mole 
fraction of znS or CdS (x = 0.67). Thus, the local 
mode, which corresponds to a concentration of S~O 
(x~l), could not be investigated as a function of 
pressure. 

The low frequency modes of ZnSl_,.Se" and CdS1_"Se" 
also have linear pressure dependence (Figs. 2 and 4). 
For x ~ 0.41 in the case of ZnS1_"Se", and for all values 
of x in the case of CdS1_"Sex , the low frequency mode 
(TOz) retains its ZnSe- or CdSe-like character. How
ever, for x=0.19 and 0.03 in the case of ZnSl_"Se", 
very little frequency shift with pressure is observed. 
Repeated measurements have given assurance that 
this apparently anomalous behavior for the low Se 
concentrations is real. Such a situation does not, 
however, exist for the CdS1_"Se" system. 

We offer a tentative explanation for this behavior. 
Both ZnS and CdS crystals have forbidden gaps in 
their phonon spectrum. Absorption spectra of speci
mens containing nominal quantities of Se in ZnS or 
CdS are thus true gap modes. The frequency range of 
the frequency gap found in a diatomic crystal AB 
depends primarily on the mass ratio 1nA/ mB. If the two 
masses are nearly equal, no gap exists, e.g., KCl. 
Consequently, no gap mode is observed for a Br im
purity in KCl although mBr>mK,mCI. As a result the 
system KCh_"Br" hows one-mode behavior.z .3 For 
the cases under consideration, however, mCd/ mS = 3.51 
and mZn/ ms = 2.01, and thus it is expected that the 
forbidden frequency gap in CdS will be considerably 
larger than that in ZnS. Recent lattice dynamical 
calculation on CdS16 and ZnS16 also confirm this. 
The calculated bandgaps expressed in the dimension-
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less unit D..II / IITO are ",0.05 and 0.14, for CdS and 
ZnS, respectively. Because of the limited range of a 
gap that can exist in the frequency spectrum of a 
crystal, the gap modes are expected to be relatively 
less pressure sensitive in comparison to local modes 
which occur in a free region above the optic band. 
Furthermore, for crystals with relatively smaller gaps, 
the gap mode will be expected to exhibit less pres
sure dependence as in the case ,vith ZnS: Se vis-a.-vis 
CdS:Se. 

1. L. Vegard, Shrifter Norski Videnskaps. Akad. Oslo, Mat. 
Naturv. KIa se 1, 88 (1947). Chem. Abstracts 43, 4073h 
(1949). 

2. 1. F. Chang and S. S. Mitra, Phys. Rev. 172,924 (1968). 
3. J. R. Ferraro, C. Postmus, S. S. ]'.ilitra, and C. J. Hoskins, 

Appl. Opt. 9, 5 (1970). 
4. O. Brafman, I. F . Chang, G. Lengyel, S. S. Mitra, and E. 

Caruall, Jr., Phys. Rev. Letters 19, 1128 (1967). 
5. J. F. Parrish, C. H. Perry, O. Brafman, 1. F. Chang, and S. R. 

Mitra, Proceedings of the International Conference on Physics 
of II-VI S emiconductors (W. A. Benjamin, New York, 1967), 
pp. 1164-84. 

6. J. R. Ferraro, S. S. Mitra, and C. Postmus, Inorg. Nucl. 
Chem. Letters 2, 269 (1966). 

7. C. Postmus, J. R. Ferraro, and S. S. Mitra, Inorg. Nuc!. 
Chem. Letters 4, 55 (1968) . . 

8. S. S. Mitra, C. Postmus, and J. R. Ferraro, Phys. Rev. 
Letters 18, 455 (1967). 

9. R. Geick, C. H. Perry, and S. S. Mitra, J. Appl. Phys. 37, 
1994 (1966); H. N. Verltlr and A. S. Barker, Jr., Phys. Rev. 
155, 750 (1967). 

10. M. Hass, Phys. Rev. Letters 13, 429 (1964). 
11. R. H. Lyddane, R. B. Sachs, and E. Teller, Phys. Rev. 

59, 673 (1941). 
12. W. Cochran, Z. Krist. 112, 465 (1959). 
13. L. Genzel, in Optical Properties of Solids, S. Nudelman and S. 

S. Mitra, Eds. (Plenum Press, Inc., New York, 1969). 
14. S. S. Mitra, O. Brafman, W. B. Daniels, and R. K. Crawford, 

Phys. Rev. 186, 942 (1969). 
15. M. A. Nllsimovici and J. L. Birman, Phys. Rev. 156, 925 

(1967); P. Pfellty, J. L. Birman and M. A. Nllsimovici, in 
Localized Excitations in Solids, R. F. Wallis, Ed. (Plenum 
Press, Inc., New York, 1968), p. 210. 

16. J. F. Vetelino, S. S. Mitra, O. Brafman, and T. C. Damen, 
Solid State Comm. 1, 1809 (1969). 


